Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/374
DC FieldValueLanguage
dc.contributor.authorGavarini, Fabioen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:22Z-
dc.date.available2022-08-10T19:26:22Z-
dc.date.issued2007-09-15-
dc.identifier.issn00218693en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/374-
dc.description.abstractWithin the quantum function algebra Fq [GLn], we study the subset Fq [GLn]-introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217-266]-of all elements of Fq [GLn] which are Z [q, q-1]-valued when paired with Uq (gln), the unrestricted Z [q, q-1]-integral form of Uq (gln) introduced by De Concini, Kac and Procesi. In particular we obtain a presentation of it by generators and relations, and a PBW-like theorem. Moreover, we give a direct proof that Fq [GLn] is a Hopf subalgebra of Fq [GLn], and that Fq [GLn] |q = 1 ≅ UZ (gln*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism from Fε [GLn] to F1 [GLn] ≅ UZ (gln*), also introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217-266]. The same analysis is done for Fq [SLn] and (as key step) for Fq [Mn]. © 2007 Elsevier Inc. All rights reserved.en
dc.relation.ispartofJournal of Algebraen
dc.subjectHopf algebrasen
dc.subjectQuantum groupsen
dc.titleF<inf>q</inf> [M<inf>n</inf>], F<inf>q</inf> [GL<inf>n</inf>] and F<inf>q</inf> [SL<inf>n</inf>] as quantized hyperalgebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2007.03.040-
dc.identifier.scopus2-s2.0-34548126890-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/34548126890-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage761en
dc.relation.lastpage800en
dc.relation.volume315en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 8, 2024

Page view(s)

17
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.