Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/371
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:21Z-
dc.date.available2022-08-10T19:26:21Z-
dc.date.issued2015-09-01-
dc.identifier.issn21562261en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/371-
dc.description.abstractThis paper is devoted to the study of the relation between Osserman algebraic curvature tensors and algebraic curvature tensors which satisfy the duality principle. We give a short overview of the duality principle in Osserman manifolds and extend this notion to null vectors. Here, it is proved that a Lorentzian totally Jacobi-dual curvature tensor is a real space form. Also, we find out that a Clifford curvature tensor is Jacobi-dual. We provide a few examples of Osserman manifolds which are totally Jacobi-dual and an example of an Osserman manifold which is not totally Jacobi-dual.en_US
dc.language.isoenen_US
dc.publisherDuke University Pressen_US
dc.relation.ispartofKyoto Journal of Mathematicsen_US
dc.titleOn some aspects of duality principleen_US
dc.typeArticleen_US
dc.identifier.doi10.1215/21562261-3089064-
dc.identifier.scopus2-s2.0-84942092712-
dc.identifier.isi000361109000006-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84942092712-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn2156-2261en_US
dc.description.rankM21en_US
dc.relation.firstpage567en_US
dc.relation.lastpage577en_US
dc.relation.volume55en_US
dc.relation.issue3en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Oct 19, 2025

Page view(s)

18
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.