Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/370
DC FieldValueLanguage
dc.contributor.authorBlažić, Novicaen_US
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:21Z-
dc.date.available2022-08-10T19:26:21Z-
dc.date.issued2001-01-01-
dc.identifier.issn14467887en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/370-
dc.description.abstractA pseudo-Riemannian manifold is said to be timelike (spacelike) Osserman if the Jordan form of the Jacobi operator script K x is independent of the particular unit timelike (spacelike) tangent vector X. The first main result is that timelike (spacelike) Osserman manifold (M, g) of signature (2, 2) with the diagonalizable Jacobi operator is either locally rank-one symmetric or flat. In the nondiagonalizable case the characteristic polynomial of script Kx has to have a triple zero, which is the other main result. An important step in the proof is based on Walker's study of pseudo-Riemannian manifolds admitting parallel totally isotropic distributions. Also some interesting additional geometric properties of Osserman type manifolds are established. For the nondiagonalizable Jacobi operators some of the examples show a nature of the Osserman condition for Riemannian manifolds different from that of pseudo-Riemannian manifolds.en_US
dc.language.isoenen_US
dc.publisherCamebridge University Pressen_US
dc.relation.ispartofJournal of the Australian Mathematical Society Series A : Pure Mathematics and Statisticsen_US
dc.titleOsserman pseudo-Riemannian manifolds of signature (2, 2)en_US
dc.typeArticleen_US
dc.identifier.doi10.1017/s1446788700003001-
dc.identifier.scopus2-s2.0-0039250135-
dc.identifier.isi000172879300007-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0039250135-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0263-6115en_US
dc.description.rankM22en_US
dc.relation.firstpage367en_US
dc.relation.lastpage395en_US
dc.relation.volume71en_US
dc.relation.issue3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

35
checked on Feb 11, 2026

Page view(s)

13
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.