Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/366
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nikolayevsky, Y. | en_US |
dc.contributor.author | Rakić, Zoran | en_US |
dc.date.accessioned | 2022-08-10T19:26:20Z | - |
dc.date.available | 2022-08-10T19:26:20Z | - |
dc.date.issued | 2016-09-01 | - |
dc.identifier.issn | 00243795 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/366 | - |
dc.description.abstract | We prove that for an algebraic curvature tensor on a pseudo-Euclidean space, the Jordan-Osserman condition implies the Rakić duality principle, and that the Osserman condition and the duality principle are equivalent in the semisimple case. | en |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Algebraic curvature tensor | en |
dc.subject | Duality principle | en |
dc.subject | Jacobi operator | en |
dc.subject | Osserman property | en |
dc.title | The duality principle for Osserman algebraic curvature tensors | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2016.04.003 | - |
dc.identifier.scopus | 2-s2.0-84964528100 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84964528100 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 574 | en |
dc.relation.lastpage | 580 | en |
dc.relation.volume | 504 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-6226-0479 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Mar 30, 2025
Page view(s)
12
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.