Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/364
DC FieldValueLanguage
dc.contributor.authorBokan, N.en_US
dc.contributor.authorMatzeu, P.en_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:20Z-
dc.date.available2022-08-10T19:26:20Z-
dc.date.issued2005-01-01-
dc.identifier.issn00277630en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/364-
dc.description.abstractWe study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.en_US
dc.language.isoenen_US
dc.publisherNagoya University, Cambridge University Pressen_US
dc.relation.ispartofNagoya Mathematical Journalen_US
dc.titleGeometric quantities of manifolds with Grassmann structureen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/s0027763000009181-
dc.identifier.scopus2-s2.0-31544467551-
dc.identifier.isi000234224300003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/31544467551-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0027-7630en_US
dc.description.rankM21en_US
dc.relation.firstpage45en_US
dc.relation.lastpage76en_US
dc.relation.volume180en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 3, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.