Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/362
DC FieldValueLanguage
dc.contributor.authorGavarini, Fabioen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:20Z-
dc.date.available2022-08-10T19:26:20Z-
dc.date.issued2009-01-01-
dc.identifier.issn00927872en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/362-
dc.description.abstractWithin the quantum function algebra Fq[SL2], we study the subset script F signq[SL2]introduced in Gavarini (1998a)of all elements of Fq[SL2] which are ℤ[q, q-1]-valued when paired with script U signq(ζI 2), the unrestricted ℤ[q, q-1]-integral form of Uq(ζI2) introduced by De Concini, Kac, and Procesi. In particular, we yield a presentation of it by generators and relations, and a nice ℤ[q, q-1]-spanning set (of PBW type). Moreover, we give a direct proof that script F signq[SL2] is a Hopf subalgebra of Fq[SL2], and that script F signq[SL 2]|q=1 ≅ UZ(ζI2*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism (also introduced in Gavarini, 1998a) from script F signε[SL2] to script F sign 1[SL2] ≅Uℤ(ζI 2*). The same analysis is done for script F sign q[GL2], with similar results, and also (as a key, intermediate step) for script F signq[M2].en
dc.relation.ispartofCommunications in Algebraen
dc.subjectHopf algebrasen
dc.subjectQuantum groupsen
dc.titleF<inf>q</inf>[M<inf>2</inf>], F<inf>q</inf>[GL<inf>2</inf>], and F <inf>q</inf>[SL<inf>2</inf>] as quantized hyperalgebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00927870802241238-
dc.identifier.scopus2-s2.0-60649083962-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/60649083962-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage95en
dc.relation.lastpage119en
dc.relation.volume37en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 10, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.