Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/362
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gavarini, Fabio | en_US |
dc.contributor.author | Rakić, Zoran | en_US |
dc.date.accessioned | 2022-08-10T19:26:20Z | - |
dc.date.available | 2022-08-10T19:26:20Z | - |
dc.date.issued | 2009-01-01 | - |
dc.identifier.issn | 00927872 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/362 | - |
dc.description.abstract | Within the quantum function algebra Fq[SL2], we study the subset script F signq[SL2]introduced in Gavarini (1998a)of all elements of Fq[SL2] which are ℤ[q, q-1]-valued when paired with script U signq(ζI 2), the unrestricted ℤ[q, q-1]-integral form of Uq(ζI2) introduced by De Concini, Kac, and Procesi. In particular, we yield a presentation of it by generators and relations, and a nice ℤ[q, q-1]-spanning set (of PBW type). Moreover, we give a direct proof that script F signq[SL2] is a Hopf subalgebra of Fq[SL2], and that script F signq[SL 2]|q=1 ≅ UZ(ζI2*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism (also introduced in Gavarini, 1998a) from script F signε[SL2] to script F sign 1[SL2] ≅Uℤ(ζI 2*). The same analysis is done for script F sign q[GL2], with similar results, and also (as a key, intermediate step) for script F signq[M2]. | en |
dc.relation.ispartof | Communications in Algebra | en |
dc.subject | Hopf algebras | en |
dc.subject | Quantum groups | en |
dc.title | F<inf>q</inf>[M<inf>2</inf>], F<inf>q</inf>[GL<inf>2</inf>], and F <inf>q</inf>[SL<inf>2</inf>] as quantized hyperalgebras | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00927870802241238 | - |
dc.identifier.scopus | 2-s2.0-60649083962 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/60649083962 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 95 | en |
dc.relation.lastpage | 119 | en |
dc.relation.volume | 37 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-6226-0479 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 10, 2024
Page view(s)
10
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.