Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/362
DC FieldValueLanguage
dc.contributor.authorGavarini, Fabioen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:20Z-
dc.date.available2022-08-10T19:26:20Z-
dc.date.issued2009-01-01-
dc.identifier.issn00927872en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/362-
dc.description.abstractWithin the quantum function algebra Fq[SL2], we study the subset script F signq[SL2]introduced in Gavarini (1998a)of all elements of Fq[SL2] which are ℤ[q, q-1]-valued when paired with script U signq(ζI 2), the unrestricted ℤ[q, q-1]-integral form of Uq(ζI2) introduced by De Concini, Kac, and Procesi. In particular, we yield a presentation of it by generators and relations, and a nice ℤ[q, q-1]-spanning set (of PBW type). Moreover, we give a direct proof that script F signq[SL2] is a Hopf subalgebra of Fq[SL2], and that script F signq[SL 2]|q=1 ≅ UZ(ζI2*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism (also introduced in Gavarini, 1998a) from script F signε[SL2] to script F sign 1[SL2] ≅Uℤ(ζI 2*). The same analysis is done for script F sign q[GL2], with similar results, and also (as a key, intermediate step) for script F signq[M2].en
dc.relation.ispartofCommunications in Algebraen
dc.subjectHopf algebrasen
dc.subjectQuantum groupsen
dc.titleF<inf>q</inf>[M<inf>2</inf>], F<inf>q</inf>[GL<inf>2</inf>], and F <inf>q</inf>[SL<inf>2</inf>] as quantized hyperalgebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00927870802241238-
dc.identifier.scopus2-s2.0-60649083962-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/60649083962-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage95en
dc.relation.lastpage119en
dc.relation.volume37en
dc.relation.issue1en
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on May 9, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.