Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/362
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gavarini, Fabio | en_US |
dc.contributor.author | Rakić, Zoran | en_US |
dc.date.accessioned | 2022-08-10T19:26:20Z | - |
dc.date.available | 2022-08-10T19:26:20Z | - |
dc.date.issued | 2009-01-01 | - |
dc.identifier.issn | 00927872 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/362 | - |
dc.description.abstract | Within the quantum function algebra Fq[SL2], we study the subset script F signq[SL2]introduced in Gavarini (1998a)of all elements of Fq[SL2] which are ℤ[q, q-1]-valued when paired with script U signq(ζI 2), the unrestricted ℤ[q, q-1]-integral form of Uq(ζI2) introduced by De Concini, Kac, and Procesi. In particular, we yield a presentation of it by generators and relations, and a nice ℤ[q, q-1]-spanning set (of PBW type). Moreover, we give a direct proof that script F signq[SL2] is a Hopf subalgebra of Fq[SL2], and that script F signq[SL 2]|q=1 ≅ UZ(ζI2*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism (also introduced in Gavarini, 1998a) from script F signε[SL2] to script F sign 1[SL2] ≅Uℤ(ζI 2*). The same analysis is done for script F sign q[GL2], with similar results, and also (as a key, intermediate step) for script F signq[M2]. | en |
dc.relation.ispartof | Communications in Algebra | en |
dc.subject | Hopf algebras | en |
dc.subject | Quantum groups | en |
dc.title | F<inf>q</inf>[M<inf>2</inf>], F<inf>q</inf>[GL<inf>2</inf>], and F <inf>q</inf>[SL<inf>2</inf>] as quantized hyperalgebras | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00927870802241238 | - |
dc.identifier.scopus | 2-s2.0-60649083962 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/60649083962 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 95 | en |
dc.relation.lastpage | 119 | en |
dc.relation.volume | 37 | en |
dc.relation.issue | 1 | en |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-6226-0479 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.