Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/361
DC FieldValueLanguage
dc.contributor.authorBlažić, Novicaen_US
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:19Z-
dc.date.available2022-08-10T19:26:19Z-
dc.date.issued2000-01-01-
dc.identifier.issn00029939en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/361-
dc.description.abstractLet M be a Riemannian manifold with the Jacobi operator, which has constant eigenvalues, independent on the unit vector X ∈ TpM and the point p ∈ M. Osserman conjectured that these manifolds are flat or rank-one locally symmetric spaces (∇R = 0). It is known that for a general pseudo-Riemannian manifold, the Osserman-type conjecture is not true and 4-dimensional Kleinian Jordan-Osserman manifolds are curvature homogeneous. We show that the length of the first covariant derivative of the curvature tensor is isotropic, i.e. ||∇R|| = 0. For known examples of 4-dimensional Osserman manifolds of signature (- -++) we check also that || ∇R|| = 0. By the presentation of a class of examples we show that curvature homogeneity and ||∇R|| = 0 do not imply local homogeneity; in contrast to the situation in the Riemannian geometry, where it is unknown if the Osserman condition implies local homogeneity. © 1999 American Mathematical Society.en
dc.relation.ispartofProceedings of the American Mathematical Societyen_US
dc.subjectCurvature tensoren
dc.subjectIsotropicityen
dc.subjectJacobi operatoren
dc.subjectKleinian Osserman spacelike (timelike) manifolden
dc.subjectOsserman conjectureen
dc.subjectPseudo-ricmannian manifolden
dc.titleA note on the Osserman conjecture and isotropic covariant derivative of curvatureen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/s0002-9939-99-05131-x-
dc.identifier.scopus2-s2.0-22844456726-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/22844456726-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage245en_US
dc.relation.lastpage253en_US
dc.relation.volume128en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 8, 2024

Page view(s)

16
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.