Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/360
DC FieldValueLanguage
dc.contributor.authorDragovich, Brankoen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:19Z-
dc.date.available2022-08-10T19:26:19Z-
dc.date.issued2009-10-22-
dc.identifier.issn00815438en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/360-
dc.description.abstractClassical and quantum mechanics based on an extended Heisenberg algebra with additional canonical commutation relations for position and momentum coordinates are considered. In this approach additional noncommutativity is removed from the algebra by a linear transformation of coordinates and transferred to the Hamiltonian (Lagrangian). This linear transformation does not change the quadratic form of the Hamiltonian (Lagrangian), and Feynman's path integral preserves its exact expression for quadratic models. The compact general formalism presented here can be easily illustrated in any particular quadratic case. As an important result of phenomenological interest, we give the path integral for a charged particle in the noncommutative plane with a perpendicular magnetic field. We also present an effective Planck constant h{stroke}eff which depends on additional noncommutativity. © Pleiades Publishing, Ltd., 2009.en
dc.relation.ispartofProceedings of the Steklov Institute of Mathematicsen
dc.titleNoncommutative classical and quantum mechanics for quadratic Lagrangians (Hamiltonians)en_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S0081543809020072-
dc.identifier.scopus2-s2.0-70350046253-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/70350046253-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage82en
dc.relation.lastpage91en
dc.relation.volume265en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.