Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/349
DC Field | Value | Language |
---|---|---|
dc.contributor.author | García-Río, Eduardo | en_US |
dc.contributor.author | Rakić, Zoran | en_US |
dc.contributor.author | Vázquez-Abal, M. E. | en_US |
dc.date.accessioned | 2022-08-10T19:26:16Z | - |
dc.date.available | 2022-08-10T19:26:16Z | - |
dc.date.issued | 2005-01-01 | - |
dc.identifier.issn | 00222488 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/349 | - |
dc.description.abstract | It is shown that a four-dimensional Kähler metric is pointwise Osserman if and only if it is either of constant holomorphic sectional curvature or a Ricci flat complex surface. Examples of Kähler Osserman metrics with nilpotent Jacobi operators of all possible degrees are given. © 2005 American Institute of Physics. | en |
dc.relation.ispartof | Journal of Mathematical Physics | en |
dc.title | Four-dimensional indefinite Kähler Osserman manifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1063/1.1938727 | - |
dc.identifier.scopus | 2-s2.0-22944436178 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/22944436178 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.volume | 46 | en |
dc.relation.issue | 7 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-6226-0479 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Nov 10, 2024
Page view(s)
12
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.