Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/347
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:15Z-
dc.date.available2022-08-10T19:26:15Z-
dc.date.issued2007-09-01-
dc.identifier.issn03930440en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/347-
dc.description.abstractHere we give a natural extension of the duality principle for the curvature tensor of pointwise pseudo-Riemannian Osserman manifolds. We proved that this extended duality principle holds under certain additional assumptions. Also, it is proved that duality principle holds for every four-dimensional Osserman manifold. © 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectDuality principleen_US
dc.subjectJacobi operatoren_US
dc.subjectOsserman algebraic curvature tensoren_US
dc.subjectPointwise Osserman manifolden_US
dc.subjectPseudo-Riemannian manifolden_US
dc.titleOn the duality principle in pseudo-Riemannian Osserman manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2007.06.004-
dc.identifier.scopus2-s2.0-34547631597-
dc.identifier.isi000249227400015-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/34547631597-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn0393-0440en_US
dc.description.rankM21en_US
dc.relation.firstpage2158en_US
dc.relation.lastpage2166en_US
dc.relation.volume57en_US
dc.relation.issue10en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

14
checked on Dec 10, 2025

Page view(s)

16
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.