Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/334
DC FieldValueLanguage
dc.contributor.authorVeljkovic, Aleksandaren_US
dc.contributor.authorMaljkovic, Mirjanaen_US
dc.contributor.authorMitić, Nenaden_US
dc.contributor.authorMalkov, Sašaen_US
dc.contributor.authorLyu, Minjieen_US
dc.contributor.authorLin, Xinen_US
dc.contributor.authorMichalewicz, Mareken_US
dc.contributor.authorZhang, Guanglanen_US
dc.contributor.authorBrusic, Vladimiren_US
dc.date.accessioned2022-08-09T12:51:46Z-
dc.date.available2022-08-09T12:51:46Z-
dc.date.issued2021-01-01-
dc.identifier.isbn9781665401265-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/334-
dc.description.abstractSingle cell transcriptomics measures gene expression data of large number of genes, concurrently, from tens of thousands of cells present in a studied biological sample. It is difficult to obtain good classification results due to high data dimensionality and variability of biological states. We performed a preliminary study to assess the feasibility of using supervised machine learning methods to classify peripheral blood mononuclear cell (PBMC) types from single cell gene expression data. We analyzed a large PBMC data set (sim 120,000 PBMC cells), selected 47 genes (from 30698 features) suitable as SML classification features, and performed classification using 20 machine learning algorithms. Data sets represented three sample processing strategies: PBMC separation (two data sets), and experimental cell sorting by (two data sets). The accuracy in 5-class classification among 20 methods was 91-97% (PBMC separation), 97-100% (magnetic-activated cell sorting), and 82-99% (fluorescence-activated cell sorting). Our results indicate the feasibility of supervised machine learning for classification of cells into major PBMC cell types using a small number of classification features from single cell gene expression data.en_US
dc.subject10x SCTen_US
dc.subjectclassificationen_US
dc.subjectdata miningen_US
dc.subjectdimensionality reductionen_US
dc.subjectgene expressionen_US
dc.subjectmachine learningen_US
dc.subjectPBMCen_US
dc.subjecttranscriptomeen_US
dc.titleClassification of Single Cell Types using Small Sets of Expressed Genes: Comparative Analysis of Supervised Machine Learning Methodsen_US
dc.typeConference Paperen_US
dc.relation.publicationProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021en_US
dc.identifier.doi10.1109/BIBM52615.2021.9669844-
dc.identifier.scopus2-s2.0-85125205373-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85125205373-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage3322en_US
dc.relation.lastpage3326en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Paper-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-4385-6322-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

34
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.