Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/331
DC FieldValueLanguage
dc.contributor.authorKartelj, Aleksandaren_US
dc.contributor.authorMitić, Nenaden_US
dc.contributor.authorFilipović, Vladimiren_US
dc.contributor.authorTošić, Dušanen_US
dc.date.accessioned2022-08-09T12:49:41Z-
dc.date.available2022-08-09T12:49:41Z-
dc.date.issued2014-10-01-
dc.identifier.issn14327643-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/331-
dc.description.abstractThis paper introduces an electromagnetism-like (EM) approach for solving the problem of parameter tuning in the support vector machine (SVM). The proposed method is used to tune binary SVM classifiers in single and multiple kernel mode. The internal kernel structure is based on linear and radial basis functions (RBF). An appropriate encoding scheme of EM enables easy transformation of real-valued EM points directly to real-valued parameter combinations. Estimations of the generalization error based on the cross-validation and validation set error are used as objective functions. The efficient local search procedure uses variable size interval movement in order to improve the convergence of the method. The quality of the proposed method is tested on four collections of testing benchmarks through five separate experiments. The first three collections consist of small-size to medium-size classification data sets with up to 60 features and 1,300 training vectors, while the fourth collection is formed of large heterogeneous data sets with up to 1,554 features and 2,186 training vectors. The obtained results indicate that EM outperforms the comparison algorithms in 10 out of 13 instances from the first collection, 5 out of 5 instances from the second, and 13 out of 15 instances from the third collection. The last two experiments, conducted on the fourth collection, show that the proposed method outperforms 14 successful methods in 3 out of 5 data sets where RBF multiple kernel learning is used, and behaves competitively in cases when linear kernels are used.en_US
dc.relation.ispartofSoft Computingen_US
dc.subjectElectromagnetism-like metaheuristicen_US
dc.subjectClassificationen_US
dc.subjectSVM parameter tuningen_US
dc.titleElectromagnetism-like algorithm for support vector machine parameter tuningen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00500-013-1180-x-
dc.identifier.scopus2-s2.0-84919877461-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84919877461-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage1985en_US
dc.relation.lastpage1998en_US
dc.relation.volume18en_US
dc.relation.issue10en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-9839-6039-
crisitem.author.orcid0000-0002-5943-8037-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

27
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.