Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3163
DC FieldValueLanguage
dc.contributor.authorKocić, Đorđeen_US
dc.date.accessioned2026-01-30T16:38:57Z-
dc.date.available2026-01-30T16:38:57Z-
dc.date.issued2022-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3163-
dc.description.abstractIt is well known that the sphere $S^6(1)$ admits an almost complex structure J which is nearly Kähler. If M is a hypersurface of an almost Hermitian manifold with a unit normal vector field N, the tangent vector field $\xi = −JN$ is said to be characteristic. The Jacobi operator with respect to $\xi$ is called structure Jacobi operator and is denoted by $l = R(·,\xi)\xi$, where R is the curvature tensor on M. We investigate real hypersurfaces in nearly Kähler sphere $S^6(1)$ whose Lie derivative of structure Jacobi operator coincides with the covariant derivative of it and show that such submanifolds do not exist.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.titleReal hypersurfaces in S^6(1) equipped with structure Jacobi operator satisfying L_X l = ∇_X len_US
dc.typeConference Objecten_US
dc.relation.conferenceGeometrical Seminar (21 ; 2022 ; Belgrade)en_US
dc.relation.publicationBook of abstract of XXI Geometrical seminar, held June 26.- July 2nd. 2022. in Belgradeen_US
dc.identifier.urlhttps://poincare.matf.bg.ac.rs/~geometricalseminar/gsxxi/abstracts/Abstracts.pdf-
dc.contributor.affiliationGeometryen_US
dc.relation.isbn978-86-7589-158-1en_US
dc.description.rankM34en_US
dc.relation.firstpage32en_US
dc.relation.lastpage32en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Object-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-2255-2992-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.