Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/3160| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kostadinov, Marko | en_US |
| dc.contributor.author | Krstić, Mihailo | en_US |
| dc.contributor.author | Rajković, Kostadin | en_US |
| dc.contributor.author | Petković, Marko D. | en_US |
| dc.date.accessioned | 2026-01-27T17:05:49Z | - |
| dc.date.available | 2026-01-27T17:05:49Z | - |
| dc.date.issued | 2026-02-15 | - |
| dc.identifier.issn | 00243795 | - |
| dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/3160 | - |
| dc.description.abstract | In this paper, we construct the new iterative method of the form X<inf>k+1</inf>=X<inf>k</inf>P<inf>k</inf>(AX<inf>k</inf>) where P<inf>k</inf> is polynomial, for computing the inverse A<sup>−1</sup> of a given invertible matrix A∈R<sup>n×n</sup>. Coefficients of the polynomial P<inf>k</inf> in k-th iteration are variable and determined in a way to minimize the Frobenius norm of the error matrix I−AX<inf>k+1</inf>. The convergence of the new method is investigated, where several theoretical results are proven. The method is compared to the existing iterative methods of the similar type, on a various numerical examples. The results show that the new method outperforms the existing ones for almost all test matrices. Moreover, they suggest that the new method posses almost global convergence. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Linear Algebra and Its Applications | en_US |
| dc.subject | Convergence | en_US |
| dc.subject | Eigenvalues | en_US |
| dc.subject | Inverses | en_US |
| dc.subject | Iterative methods | en_US |
| dc.subject | Regular matrices | en_US |
| dc.title | Adaptive coefficients iterative method for computing matrix inverse | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.laa.2025.11.016 | - |
| dc.identifier.scopus | 2-s2.0-105022642296 | - |
| dc.identifier.isi | 001630202500001 | - |
| dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/105022642296 | - |
| dc.contributor.affiliation | Real and Functional Analysis | en_US |
| dc.relation.issn | 0024-3795 | en_US |
| dc.description.rank | M21 | en_US |
| dc.relation.firstpage | 277 | en_US |
| dc.relation.lastpage | 305 | en_US |
| dc.relation.volume | 731 | en_US |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| item.openairetype | Article | - |
| item.languageiso639-1 | en | - |
| crisitem.author.dept | Real and Functional Analysis | - |
| crisitem.author.orcid | 0000-0003-3575-3216 | - |
| Appears in Collections: | Research outputs | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.