Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3160
DC FieldValueLanguage
dc.contributor.authorKostadinov, Markoen_US
dc.contributor.authorKrstić, Mihailoen_US
dc.contributor.authorRajković, Kostadinen_US
dc.contributor.authorPetković, Marko D.en_US
dc.date.accessioned2026-01-27T17:05:49Z-
dc.date.available2026-01-27T17:05:49Z-
dc.date.issued2026-02-15-
dc.identifier.issn00243795-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3160-
dc.description.abstractIn this paper, we construct the new iterative method of the form X<inf>k+1</inf>=X<inf>k</inf>P<inf>k</inf>(AX<inf>k</inf>) where P<inf>k</inf> is polynomial, for computing the inverse A<sup>−1</sup> of a given invertible matrix A∈R<sup>n×n</sup>. Coefficients of the polynomial P<inf>k</inf> in k-th iteration are variable and determined in a way to minimize the Frobenius norm of the error matrix I−AX<inf>k+1</inf>. The convergence of the new method is investigated, where several theoretical results are proven. The method is compared to the existing iterative methods of the similar type, on a various numerical examples. The results show that the new method outperforms the existing ones for almost all test matrices. Moreover, they suggest that the new method posses almost global convergence.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectConvergenceen_US
dc.subjectEigenvaluesen_US
dc.subjectInversesen_US
dc.subjectIterative methodsen_US
dc.subjectRegular matricesen_US
dc.titleAdaptive coefficients iterative method for computing matrix inverseen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2025.11.016-
dc.identifier.scopus2-s2.0-105022642296-
dc.identifier.isi001630202500001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105022642296-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn0024-3795en_US
dc.description.rankM21en_US
dc.relation.firstpage277en_US
dc.relation.lastpage305en_US
dc.relation.volume731en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-3575-3216-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.