Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/315
DC FieldValueLanguage
dc.contributor.authorYang, Luningen_US
dc.contributor.authorZhang, Yihanen_US
dc.contributor.authorMitić, Nenaden_US
dc.contributor.authorKeskin, Derin B.en_US
dc.contributor.authorZhang, Guang Lanen_US
dc.contributor.authorChitkushev, Louen_US
dc.contributor.authorBrusic, Vladimiren_US
dc.date.accessioned2022-08-09T12:38:41Z-
dc.date.available2022-08-09T12:38:41Z-
dc.date.issued2020-12-16-
dc.identifier.isbn9781728162157-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/315-
dc.description.abstractSingle cell transcriptomics enables a high-resolution concurrent measurement of gene expression from tens of thousands of cells. We developed a method for determining standardized profiles from SCT data. We defined 48 data sets from 13 different studies and developed single-cellderived-class' (SCDC) profiles representing multiple classes and subclasses of peripheral blood mononuclear cells (PBMC). We applied pattern recognition analysis by calculating the distance from each query cell to the SCDC profiles (excluding the profiles of the query cells). Classification of cells by pattern recognition showed excellent performance for PBMC that were isolated, but not further processed by cell sorting.en_US
dc.subject10x SCTen_US
dc.subjectgene expression profilesen_US
dc.subjectpattern recognitionen_US
dc.subjectPBMCen_US
dc.titlePrediction of PBMC Cell Types Using scRNAseq Reference Profilesen_US
dc.typeConference Paperen_US
dc.relation.publicationProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021en_US
dc.identifier.doi10.1109/BIBM49941.2020.9313410-
dc.identifier.scopus2-s2.0-85100353143-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85100353143-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage1324en_US
dc.relation.lastpage1328en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Paper-
crisitem.author.deptInformatics and Computer Science-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 20, 2024

Page view(s)

11
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.