Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3147
DC FieldValueLanguage
dc.contributor.authorGolubović, Zora Lj.en_US
dc.date.accessioned2026-01-23T14:24:01Z-
dc.date.available2026-01-23T14:24:01Z-
dc.date.issued2025-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3147-
dc.description.abstractThis contribution explores advanced summability methods in the setting of Banach algebras and Banach modules, with a particular emphasis on their application to the study of ’hyperharmonic’ series. Lecture firstly gives a comparative overview of Laplace transforms in real space setting, Banach spaces, Banach algebras and Banach modules, as well as analysis of procedure proposed earlier by Gautchi and Milovanovic. Through the lens of Laplace transform and within the mentioned framework, we establish a connection with the hypergeometric and polygamma functions, thus lifting some known scalar series identities to this abstract setting. Moreover, we extend our results to the multilateral modular series, having the form $$\Sum \limits_{k=1} ^\infty (a_1+k)^{-{n_1}} c_1 \cdot (a_2+k)^{-{n_2}} c_2 \cdot \ldots \cdot (a_{m-1}+k)^{-{n_{m-1}}} c_{m-1} \cdot (a_m+k)^{-{n_m}}$$ where $a_i$ belong to possibly different Banach algebras, and $c_j$ belong to possibly different Banach bimodules, and $n_1,\ldots, n_m$ are positive integers. We obtain sums for series of the form $$\sum \limits_{k=1}^{\infty} (a+k)^{-n} , \sum \limits_{k=1}^{\infty} (-1)^k (a+k)^{-n} , \sum \limits_{k=1}^{\infty} ((a+k)^\Dagger)^{n}$$ where $\Dagger$ represents the Drazin-Koliha invertibility, or the invertibility along an idempotent. As an application, we obtain a new necessary solvability condition for the Sylvester equation ax−xb = c in Banach modules. Finally, the connection to C0−semigroups is given.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectBanach algebras and modulesen_US
dc.subjecthyperharmonic seriesen_US
dc.subjectLaplace transformsen_US
dc.subjectgeneralized inversesen_US
dc.subjectC0-semigroupsen_US
dc.titleSummation techniques in Banach algebras and modules, with applicationsen_US
dc.typeConference Objecten_US
dc.relation.conferenceSimpozijum "Matematika i primene" (15 ; 2025 ; Beograd)en_US
dc.relation.publicationXV Simpozijum "Matematika i primene" : Knjiga apstrakataen_US
dc.identifier.urlhttps://simpozijum.matf.bg.ac.rs/KNJIGA_APSTRAKATA_2025.pdf-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.isbn978-86-7589-206-9en_US
dc.description.rankM64en_US
dc.relation.firstpage45en_US
dc.relation.lastpage45en_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-0442-9368-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.