Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3146
DC FieldValueLanguage
dc.contributor.authorMarinković, Aleksandraen_US
dc.contributor.authorStarkston, Lauraen_US
dc.date.accessioned2026-01-21T16:46:11Z-
dc.date.available2026-01-21T16:46:11Z-
dc.date.issued2026-01-
dc.identifier.issn00246093-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3146-
dc.description.abstractWe classify all contact structures on 3-manifolds that admit a nonfree toric action, up to contactomorphism, and present them through explicit topological descriptions. Our classification is based on Lerman's classification of toric contact 3-manifolds up to equivariant contactomorphism [Lerman, J. Symplectic Geom. 1 (2003), 785–828]. We also prove that every contact 3-manifold with a nonfree toric action arises as the concave boundary of a toric linear plumbing over spheres inspired by Marinković et al. As a corollary of both results, we classify which contact 3-manifolds arise as the concave boundary of a linear plumbing of spheres.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofBulletin of the London Mathematical Societyen_US
dc.titleOn contact 3-manifolds that admit a nonfree toric actionen_US
dc.typeArticleen_US
dc.identifier.doi10.1112/blms.70259-
dc.identifier.scopus2-s2.0-105025357747-
dc.identifier.isi001642541700001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105025357747-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0024-6093en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. e70259en_US
dc.relation.volume58en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0003-5513-8576-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.