Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3145
DC FieldValueLanguage
dc.contributor.authorColović, Uroš A.en_US
dc.contributor.authorPrvulović, Branislaven_US
dc.contributor.authorRadovanović, Markoen_US
dc.date.accessioned2026-01-21T16:16:12Z-
dc.date.available2026-01-21T16:16:12Z-
dc.date.issued2025-09-01-
dc.identifier.issn12303429-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3145-
dc.description.abstractWe study the topological complexity of the Grassmann manifolds (Formula presented) of oriented 3-dimensional vector subspaces in ℝ<sup>n</sup>. By a result of Farber, for any field K, the topological complexity of a space X is greater than zcl<inf>K</inf> (X), where zcl<inf>K</inf> (X) is the K-zero-divisor cup-length of X. In this paper we examine zcl<inf>ℤ2</inf> (<sup>˜</sup>G<inf>n,3</inf>). Some lower and upper bounds for this invariant are obtained for all integers n ≥ 6. For infinitely many of them the exact value of zcl<inf>ℤ2</inf> ((Formula presented)) is computed, and in the rest of the cases these bounds differ by 1. We thus establish lower bounds for the topological complexity of Grassmannians (Formula presented).en_US
dc.language.isoenen_US
dc.publisherTorun : Nikolaus Copernicus Universityen_US
dc.relation.ispartofTopological Methods in Nonlinear Analysisen_US
dc.subjectGrassmann manifoldsen_US
dc.subjectTopological complexityen_US
dc.subjectzero-divisor cuplengthen_US
dc.titleTopological Complexity of Oriented Grassmann Manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.12775/TMNA.2025.001-
dc.identifier.scopus2-s2.0-105025946651-
dc.identifier.isi001651329000002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105025946651-
dc.contributor.affiliationTopologyen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn1230-3429en_US
dc.description.rankM22en_US
dc.relation.firstpage21en_US
dc.relation.lastpage49en_US
dc.relation.volume66en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptTopology-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0009-0003-3586-3658-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.