Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/3145| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Colović, Uroš A. | en_US |
| dc.contributor.author | Prvulović, Branislav | en_US |
| dc.contributor.author | Radovanović, Marko | en_US |
| dc.date.accessioned | 2026-01-21T16:16:12Z | - |
| dc.date.available | 2026-01-21T16:16:12Z | - |
| dc.date.issued | 2025-09-01 | - |
| dc.identifier.issn | 12303429 | - |
| dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/3145 | - |
| dc.description.abstract | We study the topological complexity of the Grassmann manifolds (Formula presented) of oriented 3-dimensional vector subspaces in ℝ<sup>n</sup>. By a result of Farber, for any field K, the topological complexity of a space X is greater than zcl<inf>K</inf> (X), where zcl<inf>K</inf> (X) is the K-zero-divisor cup-length of X. In this paper we examine zcl<inf>ℤ2</inf> (<sup>˜</sup>G<inf>n,3</inf>). Some lower and upper bounds for this invariant are obtained for all integers n ≥ 6. For infinitely many of them the exact value of zcl<inf>ℤ2</inf> ((Formula presented)) is computed, and in the rest of the cases these bounds differ by 1. We thus establish lower bounds for the topological complexity of Grassmannians (Formula presented). | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Torun : Nikolaus Copernicus University | en_US |
| dc.relation.ispartof | Topological Methods in Nonlinear Analysis | en_US |
| dc.subject | Grassmann manifolds | en_US |
| dc.subject | Topological complexity | en_US |
| dc.subject | zero-divisor cuplength | en_US |
| dc.title | Topological Complexity of Oriented Grassmann Manifolds | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.12775/TMNA.2025.001 | - |
| dc.identifier.scopus | 2-s2.0-105025946651 | - |
| dc.identifier.isi | 001651329000002 | - |
| dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/105025946651 | - |
| dc.contributor.affiliation | Topology | en_US |
| dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
| dc.relation.issn | 1230-3429 | en_US |
| dc.description.rank | M22 | en_US |
| dc.relation.firstpage | 21 | en_US |
| dc.relation.lastpage | 49 | en_US |
| dc.relation.volume | 66 | en_US |
| dc.relation.issue | 1 | en_US |
| item.openairetype | Article | - |
| item.cerifentitytype | Publications | - |
| item.languageiso639-1 | en | - |
| item.grantfulltext | none | - |
| item.fulltext | No Fulltext | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| crisitem.author.dept | Topology | - |
| crisitem.author.dept | Algebra and Mathematical Logic | - |
| crisitem.author.orcid | 0009-0003-3586-3658 | - |
| crisitem.author.orcid | 0000-0002-6990-1793 | - |
| Appears in Collections: | Research outputs | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.