Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3073
DC FieldValueLanguage
dc.contributor.authorIkodinović, Nebojšaen_US
dc.contributor.authorOgnjanović, Zoranen_US
dc.date.accessioned2026-01-14T11:46:19Z-
dc.date.available2026-01-14T11:46:19Z-
dc.date.issued2005-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3073-
dc.description.abstractIn this paper we investigate a probability logic which enriches propositional calculus with a class of conditional probability operators of de Finetti’s type. The logic allows making formulas such as CP  ≥ s(β|α), with the intended meaning ”the conditional probability of β given α is at least s”. A possible-world approach is proposed to give semantics to such formulas. An infinitary axiomatic system for our logic which is sound and complete with respect to the mentioned class of models is given. We prove decidability of the presented logic.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Science - Lecture Notes in Artificial Intelligenceen_US
dc.titleA logic with coherent conditional probabilitiesen_US
dc.typeConference Objecten_US
dc.relation.conferenceEuropean Conference "Symbolic and Quantitative Approaches to Reasoning in Uncertainty" - ECSQARU (8 ; 2005 ; Barcelona)en_US
dc.relation.publication8th European Conference "Symbolic and Quantitative Approaches to Reasoning with Uncerraintty" - ECSQARU 2005, Barcelona : Proceedingsen_US
dc.identifier.doi10.1007/11518655_61-
dc.identifier.scopus2-s2.0-26944491084-
dc.identifier.urlhttp://dx.doi.org/10.1007/11518655_61-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.isbn978-3-540-27326-4en_US
dc.relation.doi10.1007/b138862en_US
dc.relation.issn0302-9743en_US
dc.description.rankM33en_US
dc.relation.firstpage726en_US
dc.relation.lastpage736en_US
dc.relation.volumeLNCS 3571en_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3832-760X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

12
checked on Jan 14, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.