Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3072
DC FieldValueLanguage
dc.contributor.authorDragovic, Branko Gen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2026-01-14T11:04:39Z-
dc.date.available2026-01-14T11:04:39Z-
dc.date.issued2004-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3072-
dc.description.abstractWe consider Feynman’s path integral approach to quantum mechanics with a non-commutativity in position and momentum sectors of the phase space. We show that a quantum-mechanical system with this kind of noncommutativity is equivalent to the another one with usual commutative coordinates and momenta. We found connection between quadratic classical Hamiltonians, as well as Lagrangians, in their commutative and noncommutative regimes. The general procedure to compute Feynman’s path integral on this noncommutative phase space with quadratic Lagrangians (Hamiltonians) is presented. Using this approach, a particle in a constant field, ordinary and inverted harmonic oscillators are elaborated in detail.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.titlePath integral approach to noncommutative quantum mechanicsen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Workshop in Lie Theory and Its Applications in Physics (5 ; 2003 ; Varna)en_US
dc.relation.publicationLie Theory and Its Applications in Physics : Proceedings of the V International Workshopen_US
dc.identifier.doi10.1142/9789812702562_0024-
dc.identifier.isi000229967900024-
dc.identifier.urlhttp://dx.doi.org/10.1142/9789812702562_0024-
dc.contributor.affiliationGeometryen_US
dc.relation.isbn981-238-936-9en_US
dc.relation.doi10.1142/5603en_US
dc.description.rankM33en_US
dc.relation.firstpage364en_US
dc.relation.lastpage373en_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.