Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3038
DC FieldValueLanguage
dc.contributor.authorKarličić, Milicaen_US
dc.contributor.authorRistović, Ivanen_US
dc.contributor.authorVujošević Janičić, Milenaen_US
dc.date.accessioned2026-01-11T09:58:55Z-
dc.date.available2026-01-11T09:58:55Z-
dc.date.issued2025-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3038-
dc.description.abstractIn serverless, applications operate under strict performance and resource-usage constraints, making memory efficiency a critical aspect of system design [1]. One approach to improving efficiency is to reduce the memory footprint through informed garbage-collection (GC) decisions [2]. In this work, we present the GC Hints system that enables dynamic, workload-aware GC triggering using GC Hints policy [3] and introduce a new monitoring and visualization framework in serverless workloads. The GC Hints system is implemented within the GraalVM Serial GC [4]. It collects detailed runtime statistics, GC counters, memory-usage trends, and per-request execution times. These metrics are captured at the beginning and end of each request, enabling detailed analysis of application behavior. The visualization framework shows heap occupancy and GC activity over time, allowing us to gain deeper insight into application execution patterns and to evaluate the effectiveness of the GC Hints policy in comparison to the default policy. The visualizations also serve as a diagnostic tool, highlighting outliers or unexpected program behavior. We evaluate the system using a suite of benchmarks [5] and microbenchmarks. Our results demonstrate that the policy improves memory-usage characteristics and contributes to more predictable performance across representative serverless workloads.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectServerlessen_US
dc.subjectGarbage collectionen_US
dc.subjectGraalVMen_US
dc.titleMetrics Visualization Using Profiling-Based Adaptive GC Policy for Serverlessen_US
dc.typeConference Objecten_US
dc.relation.conferenceSimpozijum "Matematika i primene" (15 ; 2025 ; Beograd)en_US
dc.relation.publicationXV Simpozijum "Matematika i primene" : Knjiga apstrakataen_US
dc.identifier.urlhttps://simpozijum.matf.bg.ac.rs/KNJIGA_APSTRAKATA_2025.pdf-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.isbn978-86-7589-206-9en_US
dc.description.rankM64en_US
dc.relation.firstpage37en_US
dc.relation.lastpage37en_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0009-0004-7553-3909-
crisitem.author.orcid0000-0002-1679-3848-
crisitem.author.orcid0000-0001-5396-0644-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.