Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3037
DC FieldValueLanguage
dc.contributor.authorMilenković, Stefanen_US
dc.contributor.authorČugurović, Milanen_US
dc.contributor.authorVujošević Janičić, Milenaen_US
dc.date.accessioned2026-01-10T18:52:13Z-
dc.date.available2026-01-10T18:52:13Z-
dc.date.issued2025-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3037-
dc.description.abstractProfile-guided optimizations (PGO) can yield substantial erformance improvements or reduce the binary size of generated programs. Despite these benefits, PGO is still not widely adopted because it relies on dynamic profiling, which places non-trivial demands on developers by requiring them to identify suitable workloads for profile data collection. To mitigate this cost, several static profiling techniques have been proposed [1], with recent approaches leveraging machine learning for more accurate predictions [2, 3]. These techniques typically estimate branch probabilities from feature sets that capture static branch information, such as control-flow structure, basic-block properties, and branch-instruction types. In this work, we employ a gradient-boosted binary classifier to predict method hotness in the GraalVM Native Image compiler [4], with a focus on minimizing binary size. We further extend existing feature sets by incorporating method-name features, which aim to improve prediction accuracy by exploiting semantic information often reflected in method names. Using GloVe embeddings [5] to encode method names, we measure an 8% reduction in binary size with only a 2% runtime performance penalty compared to a baseline model without these features.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectStatic profilersen_US
dc.subjectGraalVM Native Imageen_US
dc.subjectBinary size reductionen_US
dc.subjectMachine learningen_US
dc.titleImproving ML-Based Static Profiling Using Method Namesen_US
dc.typeConference Objecten_US
dc.relation.conferenceSimpozijum "Matematika i primene" (15 ; 2025 ; Beograd)en_US
dc.relation.publicationXV Simpozijum "Matematika i primene" : Knjiga apstrakataen_US
dc.identifier.urlhttps://simpozijum.matf.bg.ac.rs/KNJIGA_APSTRAKATA_2025.pdf-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.isbn978-86-7589-206-9en_US
dc.description.rankM64en_US
dc.relation.firstpage36en_US
dc.relation.lastpage36en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.languageiso639-1en-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0009-0006-3631-8290-
crisitem.author.orcid0009-0003-4149-5820-
crisitem.author.orcid0000-0001-5396-0644-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.