Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3031
DC FieldValueLanguage
dc.contributor.authorKnežević, Miljanen_US
dc.contributor.authorSvetlik, Mareken_US
dc.date.accessioned2026-01-10T11:38:13Z-
dc.date.available2026-01-10T11:38:13Z-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3031-
dc.description.abstractWe analyse the properties of hyperbolic metrics on various domains to obtain the Schwarz-Pick type inequalities for HQC mappings. We also present several variants of the classical Koebe theorem, along with precise hyperbolic distortion estimates, for a notable class of real-valued harmonic functions defined on the unit disc whose range is contained in the interval (−1, 1). Furthermore, we prove a significant result for the class of real harmonic functions defined on a Riemann surface equipped with a complete conformal metric whose Gaussian curvature is bounded below by a negative constant. This result provides a natural generalization of classical hyperbolic estimates and reveals deeper geometric structure in the behavior of such mappings.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectGaussian curvatureen_US
dc.subjectRiemann surfacesen_US
dc.subjecthyperbolic derivativeen_US
dc.subjectthe Schwarz-Pick lemmaen_US
dc.subjectHQC mappingsen_US
dc.subjectconformal metricsen_US
dc.titleHyperbolic Derivatives for HQC Mappings and Applicationsen_US
dc.typeConference Objecten_US
dc.relation.conferenceSimpozijum "Matematika i primene" (15 ; 2025 ; Beograd)en_US
dc.relation.publicationXV Simpozijum "Matematika i primene" : Knjiga apstrakataen_US
dc.identifier.urlhttps://simpozijum.matf.bg.ac.rs/KNJIGA_APSTRAKATA_2025.pdf-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.isbn978-86-7589-206-9en_US
dc.description.rankM64en_US
dc.relation.firstpage17en_US
dc.relation.lastpage17en_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0000-4055-1227-
crisitem.author.orcid0009-0005-0213-2167-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.