Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3030
DC FieldValueLanguage
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2026-01-10T11:24:18Z-
dc.date.available2026-01-10T11:24:18Z-
dc.date.issued2025-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3030-
dc.description.abstractLet (M, g) be a pseudo-Riemannian manifold with curvature tensor R. The Jacobi operator RX is the symmetric endomorphism of TpM defined by RX (Y ) = R(Y, X)X. In the Riemannian setting, if M is locally a rank-one symmetric space or if M is flat, then the local isometry group acts transitively on the unit sphere bundle SM . Consequently, the eigenvalues of RX are constant on SM . In the late 1980s, Osserman raised the question of whether the converse also holds; this problem is now known as the Osserman conjecture. In the first part of the lecture, we will present an overview of Osserman-type problems in pseudo-Riemannian geometry, based on the paper: N. Blažić, N. Bokan, Z. Rakić: Osserman Pseudo-Riemannian manifolds of Signature (2, 2), J. Austral. Math. Soc., 71 (2001), 367–395, as well as other related works by the same authors. The second part of the lecture will be devoted to the equivalence between the pointwise Osserman condition and the duality principle. This part is based on joint results obtained in collaboration with Yury Nikolayevsky and Vladica Andrejić. This lecture is dedicated to the memory of my mentor, Professor Novica Blažić, who passed away two decades ago.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectPseudo-Riemannian manifolden_US
dc.subjectJacobi operatoren_US
dc.subjectunit sphere bundle SMen_US
dc.subjectOsserman manifolden_US
dc.subjectOsserman pointwise conditionen_US
dc.subject(Rakić) duality principleen_US
dc.subjectOsserman conjectureen_US
dc.titleOsserman manifoldsen_US
dc.typeConference Objecten_US
dc.relation.conferenceSimpozijum "Matematika i primene" (15 ; 2025 ; Beograd)en_US
dc.relation.publicationXV Simpozijum "Matematika i primene" : Knjiga apstrakataen_US
dc.identifier.urlhttps://simpozijum.matf.bg.ac.rs/KNJIGA_APSTRAKATA_2025.pdf-
dc.contributor.affiliationGeometryen_US
dc.relation.isbn978-86-7589-206-9en_US
dc.description.rankM64en_US
dc.relation.firstpage14en_US
dc.relation.lastpage14en_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.