Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3018
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorDenker, Marken_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorRowlands, Rowanen_US
dc.contributor.authorSundaram, Sheilaen_US
dc.contributor.authorXue, Leien_US
dc.date.accessioned2026-01-07T16:41:06Z-
dc.date.available2026-01-07T16:41:06Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3018-
dc.description.abstractFor a positive integer k and a finite graph G, we define the $k$-cut complex Δk(G) to be the pure simplicial complex in which the complement of each face contains a set of k vertices inducing a disconnected subgraph of G. This generalises a simplicial complex considered by John Eagon and Victor Reiner (1998), who use Δ2(G) to reformulate and extend a famous theorem of Ralf Fröberg (1990) relating certain Stanley-Reisner ideals to chordal graphs. In particular their combined results imply that Δ2(G) is shellable if and only if G> is a chordal graph. We investigate Δk(G) with this inspiration, using techniques from algebraic and combinatorial topology. We describe the effect of various graph operations on the cut complex, consider its shellability, and determine the homotopy type and Betti numbers of Δk(G) for various families of graphs. When the homotopy type is a wedge of spheres, we also determine the group representation on the rational homology, notably in the case of complete multipartite graphs.en_US
dc.language.isoenen_US
dc.publisherDavis : University of Californijaen_US
dc.relation.ispartofSéminaire Lotharingien de Combinatoireen_US
dc.titleOn the Topology of Cut Complexes of Graphsen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Conference on "Formal Power Series and Algebraic Combinatorics" FPSAC (35 ; 2023 ; Davis)en_US
dc.relation.publicationSéminaire Lotharingien de Combinatoire - FPSAC 2023; Proceedings of the 35th International Conference on "Formal Power Series and Algebraic Combinatorics" FPSACen_US
dc.identifier.urlhttps://www.mat.univie.ac.at/~slc/wpapers/FPSAC2023/8.html-
dc.contributor.affiliationTopologyen_US
dc.relation.issn1286-4889en_US
dc.description.rankM33en_US
dc.relation.firstpageArticle no. 8en_US
dc.relation.volume89Ben_US
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.