Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3014
DC FieldValueLanguage
dc.contributor.authorKatić, Jelenaen_US
dc.contributor.authorMilinković, Darkoen_US
dc.date.accessioned2025-12-26T15:38:36Z-
dc.date.available2025-12-26T15:38:36Z-
dc.date.issued2026-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3014-
dc.description.abstractIt is known that Morse-Smale diffeomorphisms have the shadowing property; however, the question of whether $C(f)$ also has the shadowing property when $f$ is Morse-Smale remains open and has been resolved only in a few specific cases [3]. We prove that if $f : M \to M$ is a time-one-map of Morse gradient flow, the induced map $C(f) : C(M) \to C(M)$ on the hyperspace of subcontinua does not have the shadowing property.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofTopology and its Applicationsen_US
dc.titleShadowing property on hyperspace of continua induced by Morse gradient systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2025.109693-
dc.contributor.affiliationDifferential Equationsen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0166-8641en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 109693en_US
dc.relation.volume380en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.deptDifferential Equations-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-8927-0506-
crisitem.author.orcid0009-0009-9752-9894-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.