Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3008
DC FieldValueLanguage
dc.contributor.authorEbner, Brunoen_US
dc.contributor.authorJiménez-Gamero, M. Doloresen_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-12-18T13:42:53Z-
dc.date.available2025-12-18T13:42:53Z-
dc.date.issued2025-10-01-
dc.identifier.issn09325026-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3008-
dc.description.abstractFinding the eigenvalues connected to the covariance operator of a centered Hilbert-space valued Gaussian process is genuinely considered a hard problem in several mathematical disciplines. In Statistics this problem arises for instance in the asymptotic null distribution of goodness-of-fit test statistics of weighted -type as well as in the limit distribution of degenerate U-statistics. For this problem we present the Rayleigh–Ritz method to approximate the eigenvalues. The usefulness of these approximations is shown by high lightening implications such as critical value approximation and theoretical comparison of test statistics by means of Bahadur efficiencies.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofStatistical Papersen_US
dc.subjectCovariance operatoren_US
dc.subjectEigenvaluesen_US
dc.subjectGaussian Processesen_US
dc.subjectRayleigh-Ritz methoden_US
dc.subjectStatisticsen_US
dc.titleEfficient eigenvalue approximation in covariance operators via Rayleigh–Ritz with statistical applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00362-025-01751-5-
dc.identifier.scopus2-s2.0-105016792242-
dc.identifier.isi001574875500001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105016792242-
dc.contributor.affiliationProbability and Statisticsen_US
dc.relation.issn0932-5026en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 135en_US
dc.relation.volume66en_US
dc.relation.issue6en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.