Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3007
DC FieldValueLanguage
dc.contributor.authorHalaj, Katarinaen_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-12-18T13:33:37Z-
dc.date.available2025-12-18T13:33:37Z-
dc.date.issued2025-07-01-
dc.identifier.issn16182510-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3007-
dc.description.abstractWe propose two novel goodness-of-fit tests tailored for the geometric distribution. In contrast to the commonly used approach to base statistics on the empirical counterpart of the characterizing differential equation whose solution is the probability generating function of the distribution of interest, we base our tests on an independence-type characterization of the geometric distribution. The proposed test statistics rely on the discrepancy between the joint and the product of marginal V-empirical probability generating functions that correspond to the functions appearing in the characterization. We derive the asymptotic null distributions of the test statistics and their almost sure limits under general conditions. To evaluate the quality of the introduced tests, we conduct a comprehensive empirical power study to assess their finite sample properties. Our findings indicate that the proposed tests demonstrate competitive performance. Furthermore, we demonstrate the practical applicability of these tests by applying them to various real datasets.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofStatistical Methods and Applicationsen_US
dc.subjectCharacterizationen_US
dc.subjectEmpirical probability generating functionen_US
dc.subjectGoodness-of-fiten_US
dc.subjectV-statisticsen_US
dc.titleOn the application of Ferguson characterization for the construction of a goodness-of-fit test for the geometric distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10260-025-00787-z-
dc.identifier.scopus2-s2.0-105007106661-
dc.identifier.isi001500896700001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105007106661-
dc.contributor.affiliationProbability and Statisticsen_US
dc.relation.issn1618-2510en_US
dc.description.rankM22en_US
dc.relation.firstpage545en_US
dc.relation.lastpage560en_US
dc.relation.volume34en_US
dc.relation.issue3en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.