Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3005
DC FieldValueLanguage
dc.contributor.authorCuparić, Marijaen_US
dc.contributor.authorEbner, Brunoen_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-12-18T13:06:21Z-
dc.date.available2025-12-18T13:06:21Z-
dc.date.issued2025-01-01-
dc.identifier.issn00949655-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3005-
dc.description.abstractSpherical and hyperspherical data are frequently encountered across various applied research domains, highlighting the essential task of evaluating independence within such data structures. In this context, we investigate the properties of test statistics based on distance correlation measures originally developed for the energy distance, and we extend this concept to strongly negative definite kernel-based distances. A significant advantage of employing this method is its versatility across different forms of directional data, enabling the assessment of independence among vectors of varying types. The applicability of these tests is demonstrated by numerical experiments and using several real datasets.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofJournal of Statistical Computation and Simulationen_US
dc.subjectbootstrapen_US
dc.subjectcircular dataen_US
dc.subjectDistance correlationen_US
dc.subjecthyperspherical dataen_US
dc.subjectspherical dataen_US
dc.titleFlexible independence testing for hyperspherical data: a kernel approach for vectors of different dimensionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00949655.2025.2566417-
dc.identifier.scopus2-s2.0-105018848569-
dc.identifier.isi001590773100001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105018848569-
dc.contributor.affiliationProbability and Statisticsen_US
dc.contributor.affiliationProbability and Statisticsen_US
dc.relation.issn0094-9655en_US
dc.description.rankМ22en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Statistics-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-5071-8350-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.