Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2984
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.date.accessioned2025-12-11T12:55:01Z-
dc.date.available2025-12-11T12:55:01Z-
dc.date.issued2025-10-
dc.identifier.issn03930440-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2984-
dc.description.abstractAn algebraic curvature tensor on a (possibly indefinite) scalar product space is said to be Jacobi-orthogonal if, for any mutually orthogonal vectors X and Y, the Jacobi operator of X applied to Y is orthogonal to the Jacobi operator of Y applied to X. We prove that any four-dimensional algebraic curvature tensor is Jacobi-orthogonal if and only if it is Osserman.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectJacobi-dualityen_US
dc.subjectOsserman manifolden_US
dc.subjectOsserman tensoren_US
dc.titleEquivalence between Jacobi-orthogonality and Osserman condition in dimension fouren_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2025.105599-
dc.identifier.scopus2-s2.0-105011254925-
dc.identifier.isi001542035300002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105011254925-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0393-0440en_US
dc.description.rankM21aen_US
dc.relation.firstpageArticle no. 105599en_US
dc.relation.volume216en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.