Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2979
DC FieldValueLanguage
dc.contributor.authorJandrlić, D. R.en_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.contributor.authorMihić, L. J.V.en_US
dc.contributor.authorPejčev, A. V.en_US
dc.contributor.authorSpalević, M. M.en_US
dc.date.accessioned2025-12-09T16:51:47Z-
dc.date.available2025-12-09T16:51:47Z-
dc.date.issued2021-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2979-
dc.description.abstractIn this paper we are concerned with a method for the numerical evaluation of the error terms in Gaussian quadrature formulae with the Legendre weight function. Inspired by the work of H. Wang and L. Zhang [J. Sci. Comput., 75 (2018), pp. 457–477] and applying the results of S. Notaris [Math. Comp., 75 (2006), pp. 1217–1231], we determine an explicit formula for the kernel. This explicit expression is used for finding the points on ellipses where the maximum of the modulus of the kernel is attained. Effective error bounds for this quadrature formula for analytic integrands are derived.en_US
dc.language.isoenen_US
dc.publisherKent State Universityen_US
dc.relation.ispartofElectronic Transactions on Numerical Analysisen_US
dc.subjecterror bounden_US
dc.subjectGauss quadrature formulaeen_US
dc.subjectLegendre polynomialsen_US
dc.subjectremainder term for analytic functionen_US
dc.titleError bounds of Gaussian quadrature formulae with Legendre weight function for analytic integrandsen_US
dc.typeArticleen_US
dc.identifier.doi10.1553/etna_vol55s424-
dc.identifier.scopus2-s2.0-85130081354-
dc.identifier.isi000813353900014-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85130081354-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn1068-9613en_US
dc.description.rankM22en_US
dc.relation.firstpage424en_US
dc.relation.lastpage437en_US
dc.relation.volume55en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0001-5652-0038-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.