Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2974
DC FieldValueLanguage
dc.contributor.authorMerkle, Anaen_US
dc.date.accessioned2025-12-05T09:33:50Z-
dc.date.available2025-12-05T09:33:50Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2974-
dc.description.abstractIn this paper we develop the concept of dependence between filtrations given in [11], named causal predictability, which is based on the Granger’s definition of causality. Then, we provide some new properties of this concept and prove a result that consider equivalence to uniqueness of the given concept. Also, a few examples that illustrate applications of the given concept are given with the main focus on stochastic differential equations (SDE) and financial mathematics. The study of Granger’s causality has been defined in the context of time series. Since continuous time models become more and more frequent in econometric practice, epidemiology, climatology, demographic, etc, we develop a concept connected to the continuous time processes. At the same time, the modern finance theory extensively uses diffusion processes. © 2023, University of Nis. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherNiš : Prirodno-matematički fakulteten_US
dc.relation.ispartofFilomaten_US
dc.subjectCausal predictabilityen_US
dc.subjectCouplingen_US
dc.subjectFiltrationen_US
dc.subjectHazard processen_US
dc.subjectStochastic differential equationsen_US
dc.subjectWeak solutionen_US
dc.subjectWeak uniquenessen_US
dc.titleEquivalence to uniqueness in the concept of predictability between filtrationsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2330153M-
dc.identifier.scopus2-s2.0-85196777302-
dc.identifier.isi001097456800001-
dc.relation.issn0354-5180en_US
dc.description.rankM21en_US
dc.relation.firstpage10153en_US
dc.relation.lastpage10160en_US
dc.relation.volume37en_US
dc.relation.issue30en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-0006-0383-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.