Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2973
DC FieldValueLanguage
dc.contributor.authorMerkle, Anaen_US
dc.date.accessioned2025-12-05T09:24:08Z-
dc.date.available2025-12-05T09:24:08Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2973-
dc.description.abstractCausality is a topic which receives much attention nowadays and it represents a prediction property in the context of possible reduction of available information in order to predict a given filtration. In this paper we define the concept of dependence between stochastic processes and between filtrations, named causal predictability, which is based on the Granger's definition of causality. This definition extends the ones already given in the continuous time. Then, we provide some properties of the given concept. Finally, we apply the concept of causal predictability to the processes of the diffusion type, more precisely, to the uniqueness of weak solutions of the stochastic differential equations. © 2023 Ana Merkle, published by Sciendo.en_US
dc.language.isoenen_US
dc.publisherSciendoen_US
dc.relation.ispartofAnalele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematicaen_US
dc.subjectcausal predictabilityen_US
dc.subjectFiltrationen_US
dc.subjectstochastic differential equationsen_US
dc.subjectweak solutionen_US
dc.subjectweak uniquenessen_US
dc.titlePredictability and uniqueness of weak solutions of the stochastic differential equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.2478/auom-2023-0011-
dc.identifier.scopus2-s2.0-85147866891-
dc.identifier.isi000941007700011-
dc.relation.issn1224-1784en_US
dc.description.rankM22en_US
dc.relation.firstpage207en_US
dc.relation.lastpage219en_US
dc.relation.volume31en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-0006-0383-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 15, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.