Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2962
DC FieldValueLanguage
dc.contributor.authorČugurović, Milanen_US
dc.contributor.authorRistović, Ivanen_US
dc.contributor.authorStanojević, Strahinjaen_US
dc.contributor.authorSpasić, Markoen_US
dc.contributor.authorMarinković, Vesnaen_US
dc.contributor.authorVujošević Janičić, Milenaen_US
dc.date.accessioned2025-12-03T09:50:03Z-
dc.date.available2025-12-03T09:50:03Z-
dc.date.issued2025-01-01-
dc.identifier.isbn[9798331585570]-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2962-
dc.description.abstractControl flow graph models program execution paths and is essential for program analysis and compiler optimizations. Compilers traverse thousands of graphs during compilation, thus, efficient control flow graph traversal is crucial. Prior work shows that breadth-first and depth-first search algorithms can perform differently depending on the graph structure, but the impact of graph features on the choice of the traversal algorithm remained underexplored. In this paper, we construct a dataset of over 200,000 control flow graphs extracted from modern JVM-based applications and train an ensemble-based machine learning model to predict the optimal graph traversal algorithm using only a set of lightweight graph features. Our model identifies the key features that drive accurate predictions, and we demonstrate that these informative features can be efficiently extracted during control flow graph construction.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectcompilersen_US
dc.subjectcontrol flow graphsen_US
dc.subjectGraalVMen_US
dc.subjectgraph traversalsen_US
dc.subjectmachine learningen_US
dc.titleML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm in Modern Applicationsen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Conference on Electrical Electronic and Computing Engineering Icetran (12 ; 2025 ; Čačak)en_US
dc.relation.publicationProceedings 12th International Conference on Electrical Electronic and Computing Engineering Icetran 2025en_US
dc.identifier.doi10.1109/IcETRAN66854.2025.11114103-
dc.identifier.scopus2-s2.0-105015528543-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105015528543-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.description.rankM33en_US
dc.relation.firstpage1en_US
dc.relation.lastpage6en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0009-0003-4149-5820-
crisitem.author.orcid0000-0002-1679-3848-
crisitem.author.orcid0009-0007-6076-3586-
crisitem.author.orcid0009-0000-0392-0935-
crisitem.author.orcid0000-0003-0526-899X-
crisitem.author.orcid0000-0001-5396-0644-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.