Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2958
DC FieldValueLanguage
dc.contributor.authorMarinković, Aleksandraen_US
dc.contributor.authorPabiniak, M.en_US
dc.date.accessioned2025-12-03T08:34:13Z-
dc.date.available2025-12-03T08:34:13Z-
dc.date.issued2015-
dc.identifier.issn10737928 (ISSN); 16870247 (ISSN)-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2958-
dc.description.abstractWe prove that every symplectic toric orbifold is a centered reduction of a Cartesian product of weighted projective spaces. A theorem of Abreu and Macarini shows that if the level set of the reduction passes through a non-displaceable set then the image of this set in the reduced space is also non-displaceable. Using this result, we show that every symplectic toric orbifold contains a non-displaceable fiber and we identify this fiber. © 2015 The Author(s).en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.ispartofInternational Mathematics Research Noticesen_US
dc.titleEvery Symplectic Toric Orbifold is a Centered Reduction of a Cartesian Product of Weighted Projective Spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/imrn/rnv066-
dc.identifier.scopus2-s2.0-84950122654-
dc.identifier.isi000366500700006-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1073-7928en_US
dc.description.rankM21aen_US
dc.relation.firstpage12432en_US
dc.relation.lastpage12458en_US
dc.relation.volume2015en_US
dc.relation.issue23en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0003-5513-8576-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Feb 12, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.