Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2957
DC FieldValueLanguage
dc.contributor.authorMarinković, Aleksandraen_US
dc.contributor.authorPabiniak, M.en_US
dc.date.accessioned2025-12-03T08:26:34Z-
dc.date.available2025-12-03T08:26:34Z-
dc.date.issued2021-
dc.identifier.issn10737928 (ISSN); 16870247 (ISSN)-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2957-
dc.description.abstractWe are very grateful to Benjamin Nill for noticing the mistake. Our definition of reflexive polytopes, given on page 12455, is not correct. A reflexive polytope must be a lattice polytope. Therefore Corollary 5.2 needs an extra assumption: if a symplectic toric manifold M corresponds to a polytope = {x Rn | x, vj ?j, j = 1, . . . ,d}, we need to assume that the polytope = {x Rn | x, vj 1, j = 1, . . . ,d} is a smooth lattice polytope. (Formula Presented). © 2021 Oxford University Press. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.ispartofInternational Mathematics Research Noticesen_US
dc.titleErratum: Every symplectic toric orbifold is a centered reduction of a Cartesian product of weighted projective spaces (International Mathematics Research Notices DOI: 10.1093/imrn/rnv066)en_US
dc.typeArticleen_US
dc.identifier.doi10.1093/imrn/rnz239-
dc.identifier.scopus2-s2.0-85122578289-
dc.identifier.isi000731075000022-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1073-7928en_US
dc.description.rankM21en_US
dc.relation.firstpage16008en_US
dc.relation.lastpage16008en_US
dc.relation.volume2021en_US
dc.relation.issue20en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0003-5513-8576-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.