Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2956
DC FieldValueLanguage
dc.contributor.authorMarinković, Aleksandraen_US
dc.date.accessioned2025-12-03T08:18:59Z-
dc.date.available2025-12-03T08:18:59Z-
dc.date.issued2016-
dc.identifier.issn00315303 (ISSN); 15882829 (ISSN)-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2956-
dc.description.abstractAccording to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than π are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and many of them are strongly symplectically fillable. The proof is based on Lerman’s classification of toric contact manifolds and on our observation that the only contact manifolds in higher dimensions that admit free toric action are the cosphere bundle of Td,d≥3(Td×Sd-1) and T2×Lk,k∈N, with the unique contact structure. © 2016, Akadémiai Kiadó, Budapest, Hungary.en_US
dc.language.isoenen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.ispartofPeriodica Mathematica Hungaricaen_US
dc.subjectContact manifolden_US
dc.subjectSymplectic fillabilityen_US
dc.subjectToric actionen_US
dc.titleSymplectic fillability of toric contact manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10998-016-0147-y-
dc.identifier.scopus2-s2.0-84976320898-
dc.identifier.isi000380694300002-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0031-5303en_US
dc.description.rankM22en_US
dc.relation.firstpage16en_US
dc.relation.lastpage26en_US
dc.relation.volume73en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0003-5513-8576-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 10, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.