Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2955
DC FieldValueLanguage
dc.contributor.authorAcu, Baharen_US
dc.contributor.authorCapovilla-Searle, Orsolaen_US
dc.contributor.authorGadbled, Agnèsen_US
dc.contributor.authorMarinković, Aleksandraen_US
dc.contributor.authorMurphy, Emmyen_US
dc.contributor.authorStarkston, Lauraen_US
dc.contributor.authorWu, Angelaen_US
dc.date.accessioned2025-12-02T09:29:42Z-
dc.date.available2025-12-02T09:29:42Z-
dc.date.issued2025-05-01-
dc.identifier.issn00659266-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2955-
dc.description.abstractWe study the interactions between toric manifolds and Weinstein handlebodies. We define a partially-centeredness condition on a Delzant polytope, which we prove ensures that the complement of a corresponding partial smoothing of the total toric divisor supports an explicit Weinstein structure. Many examples which fail this condition also fail to have Weinstein (or even exact) complement to the partially smoothed divisor. We investigate the combinatorial possibilities of Delzant polytopes that realize such Weinstein domain complements. We also develop an algorithm to construct a Weinstein handlebody diagram in Gompf standard form for the complement of such a partially smoothed total toric divisor. The algorithm we develop more generally outputs a Weinstein handlebody diagram for any Weinstein 4-manifold constructed by attaching 2-handles to the disk cotangent bundle of any surface F, where the 2-handles are attached along the co-oriented conormal lifts of curves on F. We discuss how to use these diagrams to calculate invariants and provide numerous examples applying this procedure. For example, we provide Weinstein handlebody diagrams for the complements of the smooth and nodal cubics in CP<sup>2</sup>en_US
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.ispartofMemoirs of the American Mathematical Societyen_US
dc.titleWeinstein Handlebodies for Complements of Smoothed Toric Divisorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/memo/1561-
dc.identifier.arxivhttps://arxiv.org/pdf/2012.08666-
dc.identifier.scopus2-s2.0-105022694819-
dc.identifier.isi001501249100001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105022694819-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0065-9266en_US
dc.description.rankM21а+en_US
dc.relation.firstpagev, 115 str : graf. prikazien_US
dc.relation.volume309en_US
dc.relation.issue1561en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0003-5513-8576-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 2, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.