Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2947
DC FieldValueLanguage
dc.contributor.authorKnežević, Miljanen_US
dc.contributor.authorMateljević, Miodragen_US
dc.contributor.authorSvetlik, Mareken_US
dc.date.accessioned2025-12-01T09:58:05Z-
dc.date.available2025-12-01T09:58:05Z-
dc.date.issued2025-12-01-
dc.identifier.issn14226383-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2947-
dc.description.abstractIn this paper, we investigate the properties of hyperbolic metrics on various domains to derive the Schwarz-Pick type inequalities for harmonic quasiconformal mappings (shortly HQC mappings). As applications, we establish versions of the Koebe theorem and hyperbolic distortion results for same class of real and complex harmonic functions defined on the unit disk D and harmonic mappings u:R→(-1,1), where R is a Riemann surface with a complete conformal metric of Gaussian curvature bounded below by a negative constant.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofResults in Mathematicsen_US
dc.subjectconformal metricsen_US
dc.subjectHQC mappingsen_US
dc.subjecthyperbolic derivativeen_US
dc.subjectThe gaussian curvatureen_US
dc.subjectthe Riemann surfacesen_US
dc.subjectthe Schwarz-Pick lemmaen_US
dc.titleSome Estimates for Hyperbolic Derivative for HQC Mappings and Applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00025-025-02546-8-
dc.identifier.scopus2-s2.0-105021063465-
dc.identifier.isi001608185400001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105021063465-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn1422-6383en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 229en_US
dc.relation.volume80en_US
dc.relation.issue8en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0000-4055-1227-
crisitem.author.orcid0009-0005-0213-2167-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.