Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2944
DC FieldValueLanguage
dc.contributor.authorKarapetrović, Bobanen_US
dc.contributor.authorMashreghi, J.en_US
dc.date.accessioned2025-11-29T15:55:18Z-
dc.date.available2025-11-29T15:55:18Z-
dc.date.issued2020-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2944-
dc.description.abstractIt is well known that if f∈ H1 and g∈ Hq, where 1 ≤ q< ∞, then the integral means of order q of their Hadamard product f∗ g satisfy Mq(r,f∗g)≤‖f‖H1‖g‖Hq, uniformly for each 0 < r< 1 , and consequently ‖f∗g‖Hq≤‖f‖H1‖g‖Hq. In this note, we establish similar results in Bergman spaces Ap(D). Namely, we show that if the fractional derivatives Dαf∈ Ap(D) and Dβg∈ Aq(D) , where 0 < p≤ 1 and p≤ q< ∞, then the area integral means of order q of Dα + β - 1(f∗ g) satisfy Eq(r,Dα+β-1(f∗g))≤(1-r)2(1-1p)‖Dαf‖Ap‖Dβg‖Aq,(0<r<1).As an immediate consequence, we deduce that if D1f∈ A1(D) and g∈ Aq(D) , where 1 ≤ q< ∞, then ‖f∗g‖Aq≤‖D1f‖A1‖g‖Aq.This last result provides an approximation theme in Aq(D) spaces. © 2020, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherBirkhauseren_US
dc.publisherSpringeren_US
dc.relation.ispartofResults in Mathematicsen_US
dc.subjectarea integral meansen_US
dc.subjectBergman spacesen_US
dc.subjectHadamard convolutionen_US
dc.titleHadamard Convolution and Area Integral Means in Bergman Spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00025-020-01196-2-
dc.identifier.scopus2-s2.0-85083672516-
dc.identifier.isi000528194800001-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn1422-6383en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 70en_US
dc.relation.volume75en_US
dc.relation.issue2en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-5296-8070-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 8, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.