Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2941
DC FieldValueLanguage
dc.contributor.authorJevtić, M.en_US
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2025-11-29T14:16:23Z-
dc.date.available2025-11-29T14:16:23Z-
dc.date.issued2019-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2941-
dc.description.abstractIt is known that if X and Y are spaces of holomorphic functions in the unit disc D, which are between the mean Lipschitz space Λ1/pp, where 1 < p< ∞, and the Bloch space B, then the generalized Hilbert matrix H<inf>μ</inf>, induced by a positive Borel measure μ on the interval [0, 1), is a bounded operator from the space X into the space Y if and only if μ is a 1-logarithmic 1-Carleson measure. We improve this result by proving that the same conclusion holds if we replace the space Λ1/pp, 1 < p< ∞, by the space Λ11. Also we prove that the same conclusion holds if X and Y are spaces of holomorphic functions in D, which are between the Besov space B1 , 1 and the mixed norm space H∞ , 1 , 1. As immediate consequences, we obtain many results and some of them are new.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofComplex Analysis and Operator Theoryen_US
dc.subjectHardy spacesen_US
dc.subjectHilbert matrixen_US
dc.subjectMixed norm spacesen_US
dc.titleGeneralized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H1 and to the Space BMOAen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11785-019-00892-4-
dc.identifier.scopus2-s2.0-85062006889-
dc.identifier.isi000475576900016-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn1661-8254en_US
dc.description.rankM22en_US
dc.relation.firstpage2357en_US
dc.relation.lastpage2370en_US
dc.relation.volume13en_US
dc.relation.issue5en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-5296-8070-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

9
checked on Dec 15, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.