Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2935
DC FieldValueLanguage
dc.contributor.authorJoksimović, Dušanen_US
dc.contributor.authorSeyfaddini, Sobhanen_US
dc.date.accessioned2025-11-28T12:12:19Z-
dc.date.available2025-11-28T12:12:19Z-
dc.date.issued2024-04-01-
dc.identifier.issn10737928-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2935-
dc.description.abstractWe prove a Hölder-type inequality for Hamiltonian diffeomorphisms relating the C<sup>0</sup> norm, the C<sup>0</sup> norm of the derivative, and the Hofer/spectral norm. We obtain as a consequence that sufficiently fast convergence in Hofer/spectral metric forces C<sup>0</sup> convergence. The second theme of our paper is the study of pseudo-rotations that arise from the Anosov–Katok method. As an application of our Hölder-type inequality, we prove a C<sup>0</sup> rigidity result for such pseudo-rotations.en_US
dc.language.isoenen_US
dc.publisherOxford Academicen_US
dc.relation.ispartofInternational Mathematics Research Noticesen_US
dc.subjectEnergyen_US
dc.subjectDiffeomorphismsen_US
dc.subjectGeometryen_US
dc.titleA Hölder-Type Inequality for the C0 Distance and Anosov–Katok Pseudo-Rotationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/imrn/rnad103-
dc.identifier.scopus2-s2.0-85191383895-
dc.identifier.isi000994410100001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85191383895-
dc.relation.issn1073-7928en_US
dc.description.rankM21en_US
dc.relation.firstpage6303en_US
dc.relation.lastpage6324en_US
dc.relation.volume2024en_US
dc.relation.issue8en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-2218-0738-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 8, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.