Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2933
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorDenker, Marken_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorSundaram, Sheilaen_US
dc.contributor.authorXue, Leien_US
dc.date.accessioned2025-11-28T11:20:40Z-
dc.date.available2025-11-28T11:20:40Z-
dc.date.issued2025-01-01-
dc.identifier.issn08954801-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2933-
dc.description.abstractWe continue the study of the k-cut complex Δ<inf>k</inf>(G) of a graph G initiated in the paper of Bayer et al. [SIAM J. Discrete Math., 38 (2024), pp. 1630-1675]. We give explicit formulas for the f- and h-polynomials of the cut complex Δ<inf>k</inf>(G1 + G2) of the disjoint union of two graphs G1 and G2, and for the homology representation of Δ<inf>k</inf>(Km + Kn). We also study the cut complex of the squared path and the grid graph. Our techniques include tools from combinatorial topology, discrete Morse theory, and equivariant poset topology.en_US
dc.language.isoenen_US
dc.publisherPhiladelphia : SIAM Publicationsen_US
dc.relation.ispartofSIAM Journal on Discrete Mathematicsen_US
dc.subjectdisconnected seten_US
dc.subjectgraph complexen_US
dc.subjectgrid graphen_US
dc.subjecthomology representationen_US
dc.subjecthomotopyen_US
dc.subjectMorse matchingen_US
dc.subjectshellabilityen_US
dc.subjectsquared path graphen_US
dc.titleTopology of Cut Complexes IIen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/24M1676077-
dc.identifier.scopus2-s2.0-105006519907-
dc.identifier.isi001500918900015-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105006519907-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0895-4801en_US
dc.description.rankM21en_US
dc.relation.firstpage1123en_US
dc.relation.lastpage1157en_US
dc.relation.volume39en_US
dc.relation.issue2en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.