Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2932
DC FieldValueLanguage
dc.contributor.authorOgnjanović, Zoranen_US
dc.contributor.authorIkodinović, Nebojšaen_US
dc.date.accessioned2025-11-26T15:54:43Z-
dc.date.available2025-11-26T15:54:43Z-
dc.date.issued2007-01-01-
dc.identifier.issn03501302-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2932-
dc.description.abstractWe investigate probability logic with the conditional probability operators. This logic, denoted LCP, allows making statements such as: P<inf>≥s</inf>α, CP<inf>≥s</inf>,(α β), CP <inf>≤0</inf>(α β) with the intended meaning "the probability of α is at least s", "the conditional probability of α given β is at least s", "the conditional probability of α given β at most 0". A possible-world approach is proposed to give semantics to such formulas. Every world of a given set of worlds is equipped with a probability space and conditional probability is derived in the usual way: P(α β) = P(β)/P(αΛβ), P(β) > 0, by the (unconditional) probability measure that is defined on an algebra of subsets of possible worlds. Infinitary axiomatic system for our logic which is sound and complete with respect to the mentioned class of models is given. Decidability of the presented logic is proved.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.titleA logic with higher order conditional probabilitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM0796141O-
dc.identifier.scopus2-s2.0-51549117679-
dc.identifier.isi000213175900016-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/51549117679-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0350-1302en_US
dc.relation.firstpage141en_US
dc.relation.lastpage154en_US
dc.relation.issue96en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3832-760X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 26, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.