Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2904
DC FieldValueLanguage
dc.contributor.authorSolomun, Ljen_US
dc.contributor.authorIbrić, Svetlanaen_US
dc.contributor.authorPetrović, Jelenaen_US
dc.contributor.authorJocković, Jelenaen_US
dc.contributor.authorĐurić, Zoricaen_US
dc.date.accessioned2025-11-10T17:01:07Z-
dc.date.available2025-11-10T17:01:07Z-
dc.date.issued2010-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2904-
dc.language.isoenen_US
dc.publisherMaltaen_US
dc.titleIn silico prediction of hydrocortizone stability in freeze-dried powder for injection: multiple regression analysis vs. dynamic neural networken_US
dc.typeConference Objecten_US
dc.relation.conferenceWorld Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology (7 ; 2010 ; Malta)en_US
dc.relation.publicationProceedings of the 7th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technologyen_US
dc.contributor.affiliationProbability and Statisticsen_US
dc.description.rankM33en_US
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0009-0009-8379-2341-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.