Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2895
DC FieldValueLanguage
dc.contributor.authorMateljević, Miodragen_US
dc.contributor.authorSvetlik, Mareken_US
dc.date.accessioned2025-11-07T15:53:47Z-
dc.date.available2025-11-07T15:53:47Z-
dc.date.issued2010-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2895-
dc.description.abstractWhen a liquid (water) flows into a vessel at the constant inflow rate, then the height filling function is convex or concave depending on the way how the level of the liquid changes. When the level changes accelerating or slowing down, the function is convex or concave, respectively. This vivid interpretation holds in general, namely we prove that given a strictly increasing convex (concave) continuous function, then there exists a vessel such that its height filling function is equal to the given function. (A fact that seems to be new.) We also hope that our paper could exemplify the case of a research project to be assigned to excellent students.en_US
dc.language.isoenen_US
dc.publisherBeograd : Društvo matemaitčara Srbijeen_US
dc.relation.ispartofThe Teaching of Mathematicsen_US
dc.subjectheight filling functionen_US
dc.subjectconvex and concave functionsen_US
dc.titleA Contribution to the Development of Functional Thinking Related to Convexityen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85075039247-
dc.identifier.isi000443514900001-
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/tm/24/tm1311.pdf-
dc.relation.issn1451-4966en_US
dc.relation.firstpage1en_US
dc.relation.lastpage16en_US
dc.relation.volume13en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0009-0005-0213-2167-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 7, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.