Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2740| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Aranđelović, Ivan | en_US |
| dc.contributor.author | Krtinić, Đorđe | en_US |
| dc.date.accessioned | 2025-10-13T10:32:21Z | - |
| dc.date.available | 2025-10-13T10:32:21Z | - |
| dc.date.issued | 2012 | - |
| dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2740 | - |
| dc.description.abstract | In 1920 H. Steinhaus [Sur les distances des points de mesure positive, Fundamenta Mathematicae 1 (1920) 93-104.] proved the following result: ”Let A be a Lebesgue measurable set of positive measure. Then there exist at least two points in A such that the distance between them is a rational number”. In this paper we shall prove that there exists a sequence (xn)n>1 of different points in A such that the distance between any two of them is a rational number. Further, we shall extend our result to the case when A is a set with the Baire property (non-necessarily Lebesgue measurable). | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Banja Luka : International Mathematical Virtual Institute | en_US |
| dc.relation.ispartof | Bulletin of International Mathematical Virtual Institute | en_US |
| dc.title | Two extensions of Steinhaus's theorem | en_US |
| dc.type | Article | en_US |
| dc.identifier.url | http://www.imvibl.org/buletin/bulletin_imvi_2_2011/bulletin_2_12_43_46.pdf | - |
| dc.contributor.affiliation | Real and Functional Analysis | en_US |
| dc.relation.issn | 2303-4874 | en_US |
| dc.relation.firstpage | 43 | en_US |
| dc.relation.lastpage | 46 | en_US |
| dc.relation.volume | 2 | en_US |
| dc.relation.issue | 1 | en_US |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.languageiso639-1 | en | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| crisitem.author.dept | Real and Functional Analysis | - |
| crisitem.author.orcid | 0000-0001-5652-0038 | - |
| Appears in Collections: | Research outputs | |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.