Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2740
DC FieldValueLanguage
dc.contributor.authorAranđelović, Ivanen_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.date.accessioned2025-10-13T10:32:21Z-
dc.date.available2025-10-13T10:32:21Z-
dc.date.issued2012-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2740-
dc.description.abstractIn 1920 H. Steinhaus [Sur les distances des points de mesure positive, Fundamenta Mathematicae 1 (1920) 93-104.] proved the following result: ”Let A be a Lebesgue measurable set of positive measure. Then there exist at least two points in A such that the distance between them is a rational number”. In this paper we shall prove that there exists a sequence (xn)n>1 of different points in A such that the distance between any two of them is a rational number. Further, we shall extend our result to the case when A is a set with the Baire property (non-necessarily Lebesgue measurable).en_US
dc.language.isoenen_US
dc.publisherBanja Luka : International Mathematical Virtual Instituteen_US
dc.relation.ispartofBulletin of International Mathematical Virtual Instituteen_US
dc.titleTwo extensions of Steinhaus's theoremen_US
dc.typeArticleen_US
dc.identifier.urlhttp://www.imvibl.org/buletin/bulletin_imvi_2_2011/bulletin_2_12_43_46.pdf-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn2303-4874en_US
dc.relation.firstpage43en_US
dc.relation.lastpage46en_US
dc.relation.volume2en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0001-5652-0038-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.