Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2722
DC FieldValueLanguage
dc.contributor.authorLipkovski, Aleksandaren_US
dc.date.accessioned2025-10-09T07:12:04Z-
dc.date.available2025-10-09T07:12:04Z-
dc.date.issued2012-12-01-
dc.identifier.issn03501302-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2722-
dc.description.abstractLet A be a finite commutative ring with unity (ring for short). Define a mapping φ A<sup>2</sup> → A<sup>2</sup> by (a, b) → (a + b, ab). One can interpret this mapping as a finite directed graph (digraph) G = G(A) with vertices A<sup>2</sup> and arrows defined by φ. The main idea is to connect ring properties of A to graph properties of G. Particularly interesting are rings A = Z/nZ. Their graphs should reflect number-theoretic properties of integers. The first few graphs G<inf>n</inf> = G(Z/nZ) are drawn and their numerical parameters calculated. From this list, some interesting properties concerning degrees of vertices and presence of loops are noticed and proved.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectFinite graphsen_US
dc.subjectFinite ringsen_US
dc.subjectSymmetric polynomials.en_US
dc.titleDigraphs associated with finite ringsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM1206035L-
dc.identifier.scopus2-s2.0-84873022604-
dc.identifier.isi000312117200003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84873022604-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0350-1302en_US
dc.description.rankM23en_US
dc.relation.firstpage35en_US
dc.relation.lastpage41en_US
dc.relation.volume92en_US
dc.relation.issue106en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-7267-1490-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Oct 9, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.