Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2720
DC FieldValueLanguage
dc.contributor.authorSolomun, Ljiljana N.en_US
dc.contributor.authorIbrić, Svetlana R.en_US
dc.contributor.authorPejanović, Vjera M.en_US
dc.contributor.authorDuriš, Jelena D.en_US
dc.contributor.authorJocković, Jelenaen_US
dc.contributor.authorStankovic, Predrag D.en_US
dc.contributor.authorVujić, Zorica B.en_US
dc.date.accessioned2025-10-08T11:41:05Z-
dc.date.available2025-10-08T11:41:05Z-
dc.date.issued2012-11-26-
dc.identifier.issn0367598X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2720-
dc.description.abstractThis article presents the possibility of using of multiple regression analysis (MRA) and dynamic neural network (DNN) for prediction of stability of Hydrocortisone 100 mg (in a form of hydrocortisone sodium succinate) freeze-dried powder for injection packed into a dual chamber container. Degradation products of hydrocortisone sodium succinate - free hydrocortisone and related substances (impurities A, B, C, D and E; unspecified impurities and total impurities) - were followed during stress and formal stability studies. All data obtained during stability studies were used for in silico modeling; multiple regression models and dynamic neural networks as well, in order to compare predicted and observed results. High values of coefficient of determination (0.95-0.99) were gained using MRA and DNN, so both methods are powerful tools for in silico stability studies, but superiority of DNN over mathematical modeling of degradation was also confirmed.en_US
dc.language.isoenen_US
dc.publisherBeograd : Savez hemijskih inžinjeraen_US
dc.relation.ispartofHemijska Industrijaen_US
dc.subjectDynamic neural networken_US
dc.subjectHydrocortisoneen_US
dc.subjectMultiple regression analysisen_US
dc.subjectStabilityen_US
dc.titleIn silico methods in stability testing of Hydrocortisone, powder for injections: Multiple regression analysis versus dynamic neural networken_US
dc.typeArticleen_US
dc.identifier.doi10.2298/HEMIND120207023S-
dc.identifier.scopus2-s2.0-84869466875-
dc.identifier.isi000314735800003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84869466875-
dc.contributor.affiliationProbability and Statisticsen_US
dc.relation.issn0367-598Xen_US
dc.description.rankM23en_US
dc.relation.firstpage647en_US
dc.relation.lastpage657en_US
dc.relation.volume66en_US
dc.relation.issue5en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0009-0009-8379-2341-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.