Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2618
DC FieldValueLanguage
dc.contributor.authorCarrizosa, Emilioen_US
dc.contributor.authorJocković, Jelenaen_US
dc.contributor.authorRamírez-Cobo, Pepaen_US
dc.date.accessioned2025-09-19T15:15:08Z-
dc.date.available2025-09-19T15:15:08Z-
dc.date.issued2014-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2618-
dc.description.abstractThe double Pareto Lognormal (dPlN) statistical distribution, defined in terms of both an exponentiated skewed Laplace distribution and a lognormal distribution, has proven suitable for fitting heavy tailed data. In this work we investigate inference for the mixture of a dPlN component and lognormal components for k fixed, a model for extreme and skewed data which additionally captures multimodality. The optimisation criterion based on the likelihood maximisation is considered, which yields a global optimisation problem with an objective function difficult to evaluate and optimise. Variable Neighbourhood Search (VNS) is proven to be a powerful tool to overcome such difficulties. Our approach is illustrated with both simulated and real data, in which our VNS and a standard multistart are compared. The computational experience shows that the VNS is more stable numerically and provides slightly better objective values.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers and Operations Researchen_US
dc.subjectMixturesen_US
dc.subjectNormal Laplace distributionen_US
dc.subjectLognormal distributionen_US
dc.subjectGlobal optimisationen_US
dc.subjectGaussian variable neighbourhood searchen_US
dc.titleA global optimisation approach for parameter estimation of a mixture of double Pareto lognormal and lognormal distributionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cor.2013.10.014-
dc.identifier.scopus2-s2.0-84943815092-
dc.identifier.isi000343952200010-
dc.identifier.urlhttp://dx.doi.org/10.1016/j.cor.2013.10.014-
dc.contributor.affiliationProbability and Statisticsen_US
dc.relation.issn0305-0548en_US
dc.description.rankM21aen_US
dc.relation.firstpage231en_US
dc.relation.lastpage240en_US
dc.relation.volume52, part Ben_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0009-0009-8379-2341-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.