Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2618| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Carrizosa, Emilio | en_US |
| dc.contributor.author | Jocković, Jelena | en_US |
| dc.contributor.author | Ramírez-Cobo, Pepa | en_US |
| dc.date.accessioned | 2025-09-19T15:15:08Z | - |
| dc.date.available | 2025-09-19T15:15:08Z | - |
| dc.date.issued | 2014 | - |
| dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2618 | - |
| dc.description.abstract | The double Pareto Lognormal (dPlN) statistical distribution, defined in terms of both an exponentiated skewed Laplace distribution and a lognormal distribution, has proven suitable for fitting heavy tailed data. In this work we investigate inference for the mixture of a dPlN component and lognormal components for k fixed, a model for extreme and skewed data which additionally captures multimodality. The optimisation criterion based on the likelihood maximisation is considered, which yields a global optimisation problem with an objective function difficult to evaluate and optimise. Variable Neighbourhood Search (VNS) is proven to be a powerful tool to overcome such difficulties. Our approach is illustrated with both simulated and real data, in which our VNS and a standard multistart are compared. The computational experience shows that the VNS is more stable numerically and provides slightly better objective values. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Computers and Operations Research | en_US |
| dc.subject | Mixtures | en_US |
| dc.subject | Normal Laplace distribution | en_US |
| dc.subject | Lognormal distribution | en_US |
| dc.subject | Global optimisation | en_US |
| dc.subject | Gaussian variable neighbourhood search | en_US |
| dc.title | A global optimisation approach for parameter estimation of a mixture of double Pareto lognormal and lognormal distributions | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.cor.2013.10.014 | - |
| dc.identifier.scopus | 2-s2.0-84943815092 | - |
| dc.identifier.isi | 000343952200010 | - |
| dc.identifier.url | http://dx.doi.org/10.1016/j.cor.2013.10.014 | - |
| dc.contributor.affiliation | Probability and Statistics | en_US |
| dc.relation.issn | 0305-0548 | en_US |
| dc.description.rank | M21a | en_US |
| dc.relation.firstpage | 231 | en_US |
| dc.relation.lastpage | 240 | en_US |
| dc.relation.volume | 52, part B | en_US |
| item.grantfulltext | none | - |
| item.fulltext | No Fulltext | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.languageiso639-1 | en | - |
| item.cerifentitytype | Publications | - |
| item.openairetype | Article | - |
| crisitem.author.dept | Probability and Statistics | - |
| crisitem.author.orcid | 0009-0009-8379-2341 | - |
| Appears in Collections: | Research outputs | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.